An Indiana University study in the Journal of Child Neurology
proposes an innovative treatment for developmental coordination
disorder, a potentially debilitating neurological disorder in which the
development of a child's fine or gross motor skills, or both, is
impaired.
DCD strikes about one in 20 children, predominantly boys, and
frequently occurs alongside ADHD, autism spectrum disorders and other
better known conditions. Like ADHD, DCD has broad academic, social and
emotional impact. It can severely affect reading, spelling and
handwriting abilities; and insofar as children with DCD both struggle
with and avoid physical activity, it can also lead to problems with
self-esteem, obesity and injury.
Severity of the disorder varies, and as the researchers explain, it
is sometimes called the "hidden disorder" because of the way those with
milder cases develop coping strategies that conceal the disorder, such
as using computers to avoid handwriting tasks, and wearing shirts
without buttons, or shoes without laces. But children with DCD have been
generally thought unable to learn or improve their motor skills.
"The results of this study were remarkable," said lead author
Geoffrey Bingham, professor in the Department of Psychological and Brain
Sciences in the College of Arts and Sciences. "After training the
children over a five- to six-week period, one day a week for 20 minutes
at a time, the differences between children with DCD and typically
developing children were all but obliterated."
Key to the training was a unique technology: a three-dimensional
virtual reality device, the PHANTOM Omni from Sensable Technologies,
developed for the visualization of knots by topologists, who study
geometric forms in space. Holding a stylus attached to a robot,
participants in the study developed their fine motor skills by playing a
game in which they traced a three-dimensional virtual path in the air,
visually represented on a computer screen. Forces such as magnetic
attraction and friction can be applied to the path and adjusted so
participants could actually feel a surface that changed as the
parameters were altered.
The study compared the progress of a group of eight 7- to 8-year-olds
with DCD to a group of eight 7- to 8-year-old typically developing
children in a three-dimensional tracing game. The task was to push a
brightly colored fish along a visible path on a computer screen from the
starting location to the finish point while racing a competitor fish.
The training started with the highest level of magnetic attraction,
slowest competitor and shortest path. The goal of the training was to
allow the children to progress at their own pace through the different
combinations and levels of attraction, paths and competitors.
The children's 'Catch-22'
As Bingham's collaborator Winona Snapp-Childs, a post-doctoral fellow
in the Department of Psychological and Brain Sciences, explains, the
particular challenge facing children with DCD is a "Catch-22" situation.
Children must first be able to approximate a movement by actively
generating it themselves before they can improve it through practice and
repetition. But because children with DCD have been unable to produce
this initial movement, they have been unable to improve their skills.
The technology provided the tool needed to overcome this impasse. It
gave both the support needed to produce the movement, as well as the
flexibility to let children actively generate the movement themselves.
It allowed the children to do what they otherwise could not do: produce
the requisite initial movements that could then be practiced to yield
quantitative improvements.
The researchers say the technology could potentially be widely
accessible: It can be used without a therapist and is portable enough to
be put in clinics, classrooms or the home. It can also be adjusted to
suit the needs of children across the spectrum of DCD severity.
The study, "A Sensorimotor Approach to the Training of Manual Actions
in Children With Developmental Coordination Disorder," is appearing on
the Journal of Child Neurology Online First. Co-authors are Snapp-Child;
and Mark Mon-Williams, Institute of Psychological Sciences, University
of Leeds, U.K. Bingham directs the Perception/Action Lab at IU
Bloomington.
This work was supported by a grant from the National Institute of Child Health and Human Development.
source


Wednesday, November 28, 2012
Kids96
Posted in: 



0 komentar:
Post a Comment